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PREDICTION OF PERIODIC BOUNDARY LAYERS 

A. N. MENENDEZ* AND B. R. RAMAPFUAN? 

Iowa Institute of Hydraulic Research, The University of Iowa, Iowa City, Iowa 52242, U.S.A. 

SUMMARY 

A relatively simple, yet efficient and accurate finite difference method is developed for the solution of 
the unsteady boundary layer equations for both laminar and turbulent flows. The numerical procedure 
is subjected to rigorous validation tests in the laminar case, comparing its predictions with exact 
analytical solutions, asymptotic solutions, and/or experimental results. Calculations of periodic laminar 
boundary layers are performed from low to very high oscillation frequencies, for small and large 
amplitudes, for zero as well as adverse time-mean pressure gradients, and even in the presence of 
significant flow reversal. The numerical method is then applied to predict a relatively simple experi- 
mental periodic turbulent boundary layer, using two well-known quasi-steady closure models. The 
predictions are shown to be in good agreement with the measurements, thereby demonstrating the 
suitability of the present numerical scheme for handling periodic turbulent boundary layers. The 
method is thus a useful tool for the further development of turbulence models for more complex 
unsteady flows. 

KEY WORDS Unsteady Flows Periodic Boundary Layers Laminar Boundary Layers Turbulent Boundary 
Layers Finite-Difference Methods 

1. INTRODUCTION 

There has been increased interest in the study of unsteady flows in recent years. This is due 
to the relevance of this study to such varied applications as biofluid flows, missile 
aerodynamics, aircraft flutter, helicopter rotor blade flows, turbomachinery flows, etc. 
Unsteady inviscid flows and certain special cases of unsteady viscous flows have been studied 
and discussed very well in the classical literature. The work of Stokes' and Rayleigh2 on 
unsteady laminar flows, the asymptotic analysis of periodic laminar boundary layers by 
Lighthill,3 and the analysis of Uchida4 on periodic laminar pipe-flow are examples of the 
above. The asymptotic analytical solutions for some unsteady laminar boundary layer flows 
have been extended by Hill and Stenning,' and more recently by Ackerberg and Phillips,6 
and Pedley.' However, the bulk of the laminar viscous flow problems and all the turbulent 
shear flow problems have to be handled via numerical methods only. Finite difference 
techniques have been widely used in the past several years for the numerical solution of 
steady two-dimensional laminar and turbulent boundary layers. The extension of these 
methods to unsteadyhhree-dimensional flows has been a topic of recent and continuing 
interest, particularly in the field of aerodynamics. The interest of the aerodynamicist these 
days is often in the prediction of non-stationary turbulent boundary layers, but any numerical 
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scheme developed for this purpose needs to be validated from its performance with laminar 
flows. This is very important because modelling criteria for unsteady turbulent flows- 
especially those in which the time scale of imposed unsteadiness is of the same order as the 
characteristic time scale of turbulence-are currently being investigated by several resear- 
chers. It is, therefore, necessary to have a numerically accurate procedure for the calculation 
of unsteady turbulent boundary layers so that implications of different turbulence models can 
be tested. 

Numerical (finite difference) methods for laminar/turbulent boundary layers subjected to a 
periodic free-stream velocity have been developed, among others, by McCroskey and 
Philippe,' Cebeci,' Tsahalis and Telionis," Nash and Patel," Cousteix et al.,l2 Orlandi,13 
Orlandi and Ferziger14 and Murphy and Prenter." The turbulent boundary layer calculations 
have given inconclusive results when compared with some of the experimental data that 
became recently available. Furthermore, different calculation methods, using identical tur- 
bulence models, have sometimes given substantially different results (see Reference 15), 
making it very difficult to draw conclusions about the suitability of the proposed numerical 
procedure. This, perhaps, indicates the need to perform very rigorous tests for accuracy 
during the development of the method. 

In this paper, a numerical procedure is developed and very rigorously checked for 
accuracy with several laminar flow solutions. The method is shown to perform very well even 
in extreme situations. It is then applied to predict a periodic turbulent boundary layer. The 
results are compared with experimental data. 

2. THE NUMERICAL PROCEDURE 

2.1. Equations 

layer equations are 
The incompressible, two-dimensional, unsteady, ensemble-averaged turbulent boundary 

The ensemble averaged values, denoted by the notation ( ), can be regarded as the average 
obtained from a number of realizations. The equations are analogous to the time-averaged 
Reynolds equations for steady turbulent flows, with ( k )  and (uv )  being interpreted as the 
average turbulent kinetic energy and Reynolds shear stress, respectively. Also, with ( k )  = 
(uv )  = 0,  they reduce to the laminar boundary layer equations. The initial and boundary 
conditions are 

( W X ,  0,  t )  = 0, 
( u>(x, Y, t )  -+ u e ( x ,  t> 

( k ) ( x ,  y, t )  -+ ke = free-stream turbulence intensity as y -+ co (4) 
( W X ,  Y, 0)  = 4u(x, Y ) ,  Y, 0)  = 4 k k  Y )  
( W X , ,  Y, t> = ILu(Y, t ) ,  (k) (x , ,  Y, t) = ILk(Y, t )  

(V>(X,  0,  t )  = 0 ,  
Y + ~0 

( k ) ( x ,  0, t )  = 0 
as 
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where 4 and + are known functions, and the edge velocity Ue(x, t) is related to the pressure 
gradient via the inviscid flow equation 

If a suitable turbulence closure model is introduced, equations (1) to (3) can be solved, in 
general, starting from the given set of initial conditions at t=0.  However, if the flow is 
periodic, the equations can be solved starting from arbitrary initial conditions and be 
expected to yield eventually (after the transient effects die down) a truly periodic solution 
independent of those particular conditions. 

2.2. Transformation of the equations for periodic boundary layers 

using the following dimensionless variables: 
In this case of oscillatory boundary layers, the above equations are non-dimensionalized 

x' = ox/Uo, q = y/b(x), ? = ot 

ii = ( U)/  Uo, 6 = (V)/ob, 

k = (k ) /u ;  
ae = ( Ue)/ Uo 

where b(x) is a prescribed length scale that encloses the region where significant changes in 
flow properties are expected to occur, and ~ ( x )  is a prescribed turbulent velocity scale of the 
order of the shear velocity. 

The transformed equations in the 2-q plane are: 

The scaling length b(x) is prescribed appropriate to the specific flow situation. For 
example, b = constant corresponds to the use of physical cross-stream distances and is 
suitable for bounded flows such as flow in a channel or between two parallel plates. For the 
solution of periodic laminar boundary layer flows, b can be made equal to either the Blasius 
boundary layer thickness J(ux/ U,) (or, better still, the boundary layer thickness in steady 
flow with the same time-mean pressure gradient) or to the so called Stokes layer thickness 
( v /w)~'* ,  depending on the oscillation frequency. Likewise, for periodic turbulent flows an 
appropriate turbulent boundary layer thickness can be used for b. 

2.3. Discretization 

The non-dimensional unsteady boundary layer equations are discretized using an adapta- 
tion of the implicit finite difference scheme proposed by Oskolkov.16 To illustrate the 
procedure, the discretized versions of the momentum and continuity equations for laminar 
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flow, i.e. equations (8) and (7) with (uv)=O, are shown below, with b ( x ) = J ( v x / U o ) ,  

-1c1 - l + l -  -1+1 - l + l -  - I t 1  fi:;l-ui-ij qi (Uii uij-l) vij vij-l - + - 0  (12) _- 
A f  22, Aqjj-l Aqjj-1 

where i, j and 1 are the indices in the 2, q and i directions, respectively, and i = 1,2, . . . I ;  
j = 1,2, . . . J; 1 = 1,2, . . . . Equations (ll), with j = 1,2, . . . J, are solved simultaneously for 
each column i .  The solution is obtained by means of the efficient tridiagonal algorithm. Once 
6;;' is known from j = 1 to J, 6;:' is calculated according to equation (12). 

Note that the convection terms in the momentum equation have been linearized in their 
discrete version, equation (11). It was found that for oscillatory flow this is accurate enough. 

2.4. Initial and upstream boundary conditions 
In the case of periodic flows, the steady state solution corresponding to the time-average 

of UJx, t )  is used (for convenience) as the initial condition for the calculation. This solution 
can be obtained by starting with an arbitrary state and using the same numerical scheme as a 
relaxation procedure with the free-stream velocity constant in time at its time-mean value, 
till convergence is obtained. Calculation of the unsteady flow is then continued by prescrib- 
ing the required free-stream condition for p, namely equation (10). The final periodic state is 
reached after the initial transient dies out. 

The appropriate upstream boundary conditions must be supplied from experimental 
information. In the absence of experimental information, specification of upstream boundary 
conditions poses one of the major problems, particularly if the unsteady effects are com- 
pletely unknown in advance. In such cases, one has to assume some reasonable upstream 
boundary condition and hope that the uncertainty in the predictions will eventually die out at 
far-downstream locations. The quasi-steady solution (i.e. the solution corresponding to a 
periodic flow at an infinitely low frequency of oscillation) has been employed as the upstream 
boundary condition in most of the calculations reported here. This assumption, however, 
needs to be tested in each particular problem. 

2.5. Preliminary test problems 
The numerical method in its general (non-periodic) form was first tested by applying it to 

various simple laminar shear flow problems for which exact solutions are known. These 
included a steady flow (the flat plate boundary layer), an unsteady non-periodic flow (the 
evolution of Couette flow) and an unsteady but periodic flow (fully developed periodic flow 
in a two-dimensional channel). In all the cases the results were quite satisfactory. These tests 
and results are described in detail by Menendez and Ramaprian.17 

3. CALCULATION OF PERIODIC LAMINAR BOUNDARY LAYERS WITH 
SMALL AMPLITUDES OF OSCILLATION 

3.1. Introduction 
The method of calculation will now be applied to solve Blasius and Howarth mean flows 

subjected to oscillations of small amplitude in the free-stream velocity. These flows have 
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been chosen, since asymptotic analytical solutions, as well as experimental data, are availa- 
ble. It is well established for these problems that the extent of unsteady effects varies with 
the frequency of oscillation. For low frequencies, they manifest all across the thickness of the 
boundary layer. For high frequencies, in turn, the unsteady effects are confined to a layer of 
smaller thickness close to the wall, namely the Stokes layer. The mathematical criterion to 
distinguish between low and high frequencies is 

1 << 1: low frequencies 
1 >> 1: high frequencies 

In fact, 1 can be written as 1 = [J(vx/Uo)/J(v/w)J2, and is thus a measure of the ratio of the 
Blasius to the Stokes layer thickness. 

3.2. Blasius mean flow 

For a free-stream velocity given by 

ue(x, t )  = Ue(l + E sin wt)  (13) 
with 0, = Uo = constant and E << 1, the velocity profile can be approximated, to first order, by 

u(x, Y, t > =  U B ~ ,  Y)+EAu(x, y)sin[ot++(x, y)I (14) 
where UB is the Blasius velocity distribution, and the second term represents the periodic 
perturbation. The calculations were performed with the foliowing set of data: 

(15) 
u o x o  - Re, = - - 10,000, E - 0.10, N = 100, I = 31, J =  100 

For any given value of 1, the values of fo and A 1  are calculated such that the upstream and 
downstream stations are separated by a distance of 100 boundary layer thicknesses at Zo. 
The value of Re, is used only for estimating the boundary layer thickness at go. 

Figure 1 shows the calculated and theoretical mean velocity profiles for 1 = 1.48. For small 
amplitudes, the theoretical profile is simply the steady Blasius solution. Good agreement is 
observed between theory and numerical calculations. The result is typical for the range of f 
values analysed. 

Figures 2(a) and (2b) present results for the relative amplitude of oscillation Au/Uo and the 
phase of the oscillation + relative to the free stream, in the low frequency range 1 < 0.6. 
Also shown there is the low frequency (w --., 0) solution by Lighthill,3 and some points from 
the experiments of Hill and Stenning.’ Even for the lowest value of f shown (0.103), the 
theoretical asymptotic solution shows some deviation from the calculated one. When f 
increases, the deviation increases. This is to be expected, since the Lighthill solution 
gradually breaks down with the increase in frequency. In general, though, the calculated 
results are in better agreement with the measurements of Hill and Stenning.s 

For 1 > 0.6, generally regarded as the high frequency range, the results are shown in 
Figures 3(a) and (3b). They are presented in terms of the Stokes coordinate T~ = yJ(0 /2v) ,  
and compared with the Lighthill high frequency s ~ l u t i o n , ~  which is essentially the shear wave 
solution, namely 

OaC=(~-- UB)/SUO=COS i-exp(-q,)cos(?-qJ (16) 

V 

Points corresponding to the experiments of Hill and Stenning’ are also shown, together with 
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Figure 1. Periodic laminar boundary layer at zero-mean pressure gradient: time-mean velocity profile 
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Figure 2(a). Periodic laminar boundary layer at zero-mean pressure gradient: amplitude of oscillation for low 

frequencies 
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Figure 2(b). Periodic laminar boundary layer at zero-mean pressure gradient: phase of oscillation for low 
frequencies 

their theoretical solution. They developed a calculation for intermediate and high frequen- 
cies based on the shear wave solution, but taking first order convective effects into account. 
The present numerical calculations and the calculations of Hill and Stenning agree reasona- 
bly well with each other and with the experimental results, and all these approach the shear 
wave solution for large values of f (2 = 4.98). 

Within the adopted methodology more grid points in the 2-direction should be necessary 
in order to carry the computations to even larger values of 2 than discussed above. This is in 
order to ensure independence of results from upstream boundary conditions, taken as the 
quasi-steady solution. The disadvantage of this procedure is that computer time increases 
significantly, making the calculation uneconomical. The natural alternative seems to maintain 
the original number of nodes, but impose a more realistic upstream boundary condition. The 
best choice is the shear wave solution. Calculations were made for 2 = 20 using this 
procedure. The results for the amplitude and phase, shown in Figures 3(a) and 3(b), 
respectively, are satisfactory. 

3.3.  Howarth mean flow 

For a free-stream velocity given by 

Ue(x, t )  = Uo(l - 2 + E sin otj (17) 
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Figure 3(a). Periodic laminar boundary layer at zero-mean pressure gradient: amplitude of oscillation for high 
frequencies 

where E << 1 and 2 = blx/Uo, with bl = constant, the velocity profile depends on two parame- 
ters, namely .% and i. However, all the calculations were performed for 2 = 0.1 (close to 
R = 0.12, the location of the separation point in steady Howarth flow1*) to compare with the 
theoretical and experimental results of Hill and Stenning. The following data were used: 

Re,=10,000, 2=0.1, E-0.1, N=100, I=31,  5=100 (18) 

The distance between Zo and .i was varied from 100 boundary layer thicknesses (mean value 
at go) for the lower frequencies to 300 boundary layer widths for the higher ones. This was 
necessary in order to avoid the effects of the upstream boundary condition. It was also found 
that flow reversal (but not separation) occurred near the wall for some of the cases studied. 
A modification of the numerical scheme was found to be necessary in order to handle such 
reverse flow regions. This modification is described in Section 3.5. 

Figure 4 shows the calculated time-mean velocity profile for 2 = 2.31, together with the 
theoretical profile which, for small amplitudes, is identical to that for steady Howarth flow. 
The agreement is quite good, and is typical for all the range of 2 analysed. 

Figures 5(a) and 5(b) present the results for the amplitude and phase of the oscillation in 
the low frequency range. The Lighthill low frequency asymptotic solution, as evaluated by 
Hill and Stenning,' is also shown together with experimental data from the same authors. 
The agreement between calculation and measurements is less satisfactory now than in the 
previous case. The Lighthill solution, on the other hand, is not accurate, in principle, at these 
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Figure 3(b). Periodic laminar boundary layer at zero-mean pressure gradient: phase of oscillation for high 
frequencies 

values of i. Its agreement with the experimental results for the phase when 2 = 0-450 must 
then be considered accidental. It must also be recognized that phase measurements at these 
low frequencies could be quite inaccurate. 

Results for the intermediate and high frequency range are shown in Figures 6(a) and 6(b). 
They are compared with the Lighthill high frequency solution [again the shear wave solution, 
equation (16)] and with the Hill and Stenning theoretical and experimental results.’ The 
results are shown using the Stokes coordinate qs as the cross-stream variable. The theory of 
Hill and Stenning give results which agree reasonably well with the calculation. The 
discrepancy between calculation and measurements, in turn, could perhaps be due to the 
difficulties encountered in simulating and measuring a periodic flow of this type. 

For both Blasius and Howarth mean flow problems, complete stabilization of the periodic 
numerical solution was achieved just after one cycle for small 2, and after two cycles for large 
2. Computer time was about 0418 s per time step and per column (of 100 points) on an IBM 
370/ 168. 

3.4. Step sizes 

The time step used throughout the calculations presented in the last two sections was 
AT= 0.0628, corresponding to a total number of time steps, N = 100. The grid size in the 
q-direction is not constant. The grid point locations were adjusted so as to give a uniform 
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Figure 5(a). Periodic laminar boundary layer for Howarth mean flow: amplitude of oscillation for low frequencies 
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Figure 5(b). Periodic laminar boundary layer for Howarth mean flow: phase of oscillation for low frequencies 

velocity increment across the boundary layer (except for a few points at the outer edge, to 
avoid too low a density of points there). Typically, Aq varied from 0.05 near the wall to 0.65 
at the outer edge, for J =  100. The grid size in the f-direction was maintained constant in a 
given run. It was calculated for each run, by fixing the distance between go and f (100-300 
boundary layer thicknesses) and the number of grid points I( = 31) between them. In this 
way A f  typically ranged from 0-003 (for small 2 )  to 0-14 (for large 2) .  The sensitivity of the 
numerical solution to variations in the step sizes was appropriately checked, and the above 
values were found to be satisfactory.” 

3.5. Handling of flow reversal 

The upwind differencing of convective terms in equation (1 1) becomes inaccurate (and 
eventually unstable) when one or both of the velocity components are negative. In fact, for 
mean adverse pressure gradient flows (such as Howarth flow), for large amplitudes of 
oscillation, or for high frequencies of oscillation, flow reversal is likely to occur during part of 
the cycle. This does not (necessarily) mean separation, in the sense of breakdown of the 
boundary layer approximation. For regions of the flow in which such flow reversal (but not 
separation) occurs, the convective terms in equation (11) are discretized according to 
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Figure 6(a). Periodic laminar boundary layer for Howarth mean flow: amplitude of oscillation for high frequencies 

L " i J  L V I  "ij ." 

The term -(7$22)iiaii/aq in equation (11) was left unchanged, as the quantity being 
convected is a derivative in a normal direction relative to the velocity. It is seen that for the 
case i i i j<O,  iif+lj is not known at the last downstream station. For this station, therefore, the 
value at the previous time level, namely 68, is used instead. To avoid a direct impact of this 
procedure on the velocity profiles at a given 2, five additional grid-points are used beyond 
this station (increasing I from 31 to 36). 

The results obtained with this numerical scheme for the Howarth-mean-flow problem 
discussed in Section 3.3, were found to be satisfactory. These results were further checked by 
performing analogous calculations for much smaller absolute amplitudes of oscillation 
( E  =0.01) for which no flow reversal occurs.17 
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4. PERIODIC LAMINAR BOUNDARY LAYERS AT LARGE AMPLITUDES 
OF OSCILLATION 

The case of periodic boundary layers with large oscillation amplitude deserves a separate 
study. In fact, for a free-stream velocity given by equation (13) with arbitrary E ,  the velocity 
profile depends now on the two parameters 2 and E. Then, the asymptotic solutions referred 
to in the previous section will not be applicable except at high frequencies (o +. m). As far as 
the authors are aware, the only solution available for such flows is that obtained by Pedley’ 
using both regular (for w +. 0) and singular (for o +. m) asymptotic expansions. Even these 
are essentially numerical solutions and are available for the skin friction and surface heat 
transfer only. No experimental data are available at present. 

Calculations for E = 0.5 were performed for various values of 2. The remaining data were 
the same as those in equation (15), and the distance between f and lo was taken as 100 
boundary layer thicknesses. 

Figures 7(a) and 7(b) show the calculated evolution of the wall shear stress with time 
during the oscillation cycle for f = 0.1, 0.6 and 4. The theoretical solution of Pedley7 for the 
same amplitude, E = 0.5, is also presented. Good agreement is observed for the two extreme 
cases, f = 0.1 and f = 4. In the first case, the comparison is made with the asymptotic 
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expansion for small 2. In the second case, the asymptotic expansion for large f is used. The 
intermediate case, f = 0.6, corresponds to the overlapping zone, and hence some departure 
can be expected. Negative values of the wall shear stress in Figures 7(a) and 7(b) indicate the 
existence of a backflow region. It is seen that the numerical scheme works satisfactorily even 
with strong flow reversals (large negative wall shear stress). 

5. PERIODIC TURBULENT BOUNDARY LAYERS 

After performing the rigorous tests described in the previous sections to establish the 
accuracy of the numerical procedure for laminar flow, the method was extended to calculate 
periodic turbulent boundary layers, using well-known and simple turbulence closure models. 
These are the Prandtl mixing length model (a zero-equation model) and the Prandtl energy 
(k-L) model (a one-equation model). A recent experiment by Parikh, Reynolds and 
Jayaraman'l has been used as the test case. 

The details of the two models are given below. 
(a) Mixing length model: The Reynolds stress (uv) in equation (2) is expressed as1'*17 

where (1,) is the mixing length, prescribed by 

(I,) = 0.095(6) tanh {0.4y[l- exp (-y( UT)/26v)]/(0.095(6))} (22) 
In this case, only equations (1) and (2) are solved. 

(b) k-L model: The assumptions are17~19*20 

(uv) = -C1d(2(k))(1,)[ 1 - exp 

with the length scale (lk) being defined as 

The empirical constants are given their usual values, which are 

C1= Cz = 0.39, C3 = 0.0136, Cd = 0.0593, Cs = 2.698 (27) 
Now, the three equations, (1)-(3), are used. 

Both turbulence models are used in a quasi-steady form, by relating the ensemble 
averaged shear stress (uu)  to the ensemble averaged flow properties at the same phase 
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position. Also in both cases the finite difference calculations are carried up to the wall 
without the use of any algebraic wall functions.2z Such functions are not known a priori for 
unsteady turbulent flows. In order to ensure that the numerical procedure works correctly for 
turbulent flows, calculations were first made for steady turbulent boundary layer in zero- 
pressure gradient, with good re~u1ts.l~ 

tribution is given by 
In the experiments of Parikh, Reynolds 

(1 
ao(x  - XO) 

LO 
u e ( x ,  t )  = 

and Jayaraman?’ the free-stream velocity dis- 

Thus, there exists a steady zero-pressure gradient for x<xo and a periodic adverse 
pressure gradient from x = xo to x =Lo. The values of the various flow parameters are: 

(29) 
Uo = 0.73 m/s, xo = 2 m, Lo = 0.6 m, So = 0.05 m, a, = 0.05 Uo 

f=O.OHz, 0*25Hz, 0.5Hz and 2-OHz 

Calculations were performed for frequencies of 0.01 Hz, 0-25 Hz, 0.5 Hz, and 2.0 Hz. The 
first frequency can be regarded as nearly quasi-steady. In all these calculations the upstream 
boundary conditions for ( U ) ( x o ,  y, t )  and ( k)(xo,  y, t) corresponded to a standard steady zero- 
pressure gradient turbulent boundary layer, and the initial conditions were taken as the 
steady state at the time-mean pressure gradient. Equations (7)-(10) were used with the 
scaling length b ( x )  and velocity u,(x) being chosen as 

V 
b ( x )  = 0.14- Re:” 

UO 

The above expressions are correlation formulae proposed by Whitez3 for the boundary 
layer thickness and the shear velocity, respectively, along a flat plate, with Re, = Uox/v. A 
total of 101 grid points were used in the cross-stream direction. These were variably spaced 
so as to give equal velocity intervals at the downstream station. A total of 30 steps were used 
in the 2-direction and 100 time steps per cycle. Some typical results of the above calculations 
are shown and compared with experiments in Figures 8, 9(a) and 9(b). Comparisons are also 
shown with similar calculations made by Orlandi13 using a nearly identical k-L model but a 
different numerical scheme. More results and comparisons can be found in Reference 17. 

In the experiments, the time-mean velocity distribution across the boundary layer was 
found to be unaffected by the imposed oscillation and equal to that in steady flow under the 
time-mean pressure gradient conditions. The calculation indicated practically the same 
(Figure 8). It is seen that the k-L model gives a slightly better prediction. 

Figures 9(a) and 9(b) show the results for the amplitude, AU and phase, of the periodic 
velocity, respectively, when f = 0.25 Hz (in these Figures, A U e  = ao(x - xo)/Lo). The predic- 
tion of the amplitude is satisfactory in an overall sense though the two-models deviate from 
the experimental results in detail. Also shown in Figure 9(a) is the numerical solution of 
Orlandi. He used the same modelling assumptions, equations (23)-(25), though equation 
(24) was used to model only the kinetic energy diffusion part. The pressure-strain term was 
modelled separately. He also employed a different (but essentially equivalent) analytical 
expression for the length scale (lk) and used slightly different values for the empirical 
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Figure 8. Periodic turbulent boundary layer in adverse pressure gradient: time-mean velocity profile 

constants. His calculation underpredicts the amplitude. In fact, the same was found to be 
true for the quasi-steady case." However, this discrepancy between the present calculations 
and those of Orlandi appeared to decrease with increasing frequency. The prediction of the 
phase by both the turbulence models studied seems to be in general agreement with the 
experiment and can be considered to be satisfactory in view of the exDerimenta1 uncertainties 
and the simplicity of the models used. 
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Figure 9(a). Periodic turbulent boundary layer in adverse pressure gradient: amplitude of oscillation for f = 0.25 Hz 
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Figure 9(b). Periodic turbulent boundary layer in adverse pressure gradient: phase of oscillation for f = 0.25 Hz 

6. CONCLUSIONS 

An implicit, finite difference procedure for the prediction of time-dependent boundary layer 
flows has been developed. The method has been demonstrated to be accurate at small and 
large frequencies, at all amplitudes and even when there is flow reversal during a part of the 
cycle in a periodic laminar flow. When applied to a simple turbulent flow, its predictions 
show good agreement with the available experimental results. 
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NOTATION 

b =transverse length scale 
C, 
f = frequency of oscillation 
k 
k' 
N 

= local skin friction coefficient, ~ , / ( $ p u : )  

= instantaneous turbulent kinetic energy 
= (k)/uT = dimensionless turbulent kinetic energy 
=number of time steps per cycle 



PREDICTION OF PERIODIC BOUNDARY LAYERS 799 

= instantaneous pressure 
= [2kI1” 
=time co-ordinate 
= ot = dimensionless time 
= instantaneous streamwise velocity component 
= streamwise velocity scale 
= shear velocity 
=turbulent fluctuation of U 
= velocity scale for the turbulence 
= (U) /  U,, = dimensionless streamwise velocity component 
= instantaneous cross-stream velocity component 
=turbulent fluctuation of V 
= ( V ) / w b  = dimensionless cross-stream velocity component 
= streamwise co-ordinate 
= ox/ U, = dimensionless streamwise co-ordinate 
= cross-stream co-ordinate 
=time step size 
= amplitude of the periodic component of U 
= AU/E 
= step size in the streamwise direction 
- qi - qjP1 = step size in the cross-stream direction 
= boundary layer thickness 
= A U,/ U, = relative amplitude of the free-stream oscillation 
= dissipation of turbulent kinetic energy 
= y / b  (x) = dimensionless cross-stream co-ordinate 
= yJ(  Uo/2ux) = Blasius co-ordinate 
= yJ(w/2v) = Stokes co-ordinate in periodic flow 
= kinematic viscosity of the fluid 
= mass density of the fluid 
=phase of the periodic component of U 
= 27rf = angular frequency of oscillation 
= ensemble-averaged value 

- 

overbar = time-averaged value - = ensemble-averaged dimensionless variable 

Subscripts 
e =edge of boundary layer 
0 = upstream value 

REFEXFiNCES 

1. G. G. Stokes, ‘On the effect of the internal friction of fluids on the motion of pendulums’, Math. and Phys. 

2. Lord Rayleigh, ‘On the motion of solid bodies through viscous liquid‘, Phil. Mag., 21, 697-711 (1911). 
3. M. J. Lighthill, ‘The response of laminar skin friction and heat transfer to fluctuations in the stream velocity’, 

4. S. Uchida, ‘The pulsating viscous flow superposed on the steady motion of incompressible fluid in a circular 

5. P. G. Hill and A. H. Stenning, ‘Laminar boundary layers in oscillatory flow’, J. Basic Eng., 82,593-608 (1960). 
6. R. C. Ackerberg and J. H. Phillips, ‘The unsteady laminar boundary layer on a semi-inhite plate due to small 

Papers, 111, Cambridge, 1-141 (1901). 

ROC. ROY. SOC., 2244 1-23 (1954). 

pipe’, ZAMP, 7, 403-421 (1956). 

fluctuations in the magnitude of the free-stream velocity’, J. Fluid Mech., 51, 137-157 (1972). 



800 A. N. MENENDEZ AND B. R. RAMAPRIAN 

7. T. J. Pedley, ‘Two-dimensional boundary layer in a freestream which oscillates without reversing’, J. Fluid 

8. W. J. McCroskey and J.J. Philippe, ‘Unsteady viscous flow on oscillating airfoils’, AIAA Journal, 13, 71-79 

9. T. Cebeci, ‘Calculation of unsteady two-dimensional laminar and turbulent boundary layers with fluctuations in 

10. D. Th. Tsahalis and D. P. Telionis, ‘Oscillating boundary layers with large amplitude’, in F. 0. Carta (Ed.) 

11. J. F. Nash and V. C. Patel, ‘Three-dimensional turbulent boundary layers’, Scientific and Business Consultants, 

12. J. Cousteix, R. Houdeville and A. Desopper, ‘Resultats experimentaux et methodes de calcul relatifs aux 

13. P. Orlandi, ‘Unsteady adverse pressure gradient turbulent boundary layers’, R. Michel, J. Cousteix and R. 

14. P. Orlandi and J. H. Ferziger, ‘Implicit noniterative schemes for unsteady boundary layers’, AZAA Journal, 19, 

15. J. D. Murphy and P. M. Prenter, ‘A hybrid computing scheme for unsteady turbulent boundary layers’, 

16. A. P. Oskolkov, ‘Certain finite-difference schemes for equations of the nonstationary laminar boundary layer’, 

17. A. N. Menendez and B. R. Ramaprian, ‘Calculation of unsteady boundary layers’, ZZHR Report No. 248, 1982. 
18. L. Howarth, ‘On the solution of the laminar boundary layer equations’, Roc. Roy. Soc., 164A, 547-579 (1938). 
19. M. Acharya and W. C. Reynolds, ‘Measurements and predictions of a fully developed turbulent channel flow 

20. S. W. Tu and B. R. Ramaprian, ‘Quasi-steady modelling of periodic turbulent pipe flow’, to appear in AIAA 

21. P. G. Parikh, W. C. Reynolds and R. Jayaraman, ‘Behavior of an unsteady turbulent boundary layer’, AZAA 

22. S. V. Patankar and D. B. Spalding, Heat and Mass Transfer in Boundary Layers, Morgan-Grampian, London, 

23. F. M. White, Viscous Fluid Flow, McGraw-Hill, New York, 1974. 

Mech., 55, 359-383 (1972). 

(1975). 

external velocity’, Roc. Roy. Soc., 3554 225-238 (1977). 

Unsteady Flows in Jet Engines, 1974. 

Inc., Atlanta, 1972. 

couches limites turbulentes en ecoulement instationnaire’, ONERA T. P. No. 1977, 134 (1977). 

Houdeville (Eds), Unsteady Turbulent Shear Flows, Springer-Verlag, Berlin, 1981, pp. 159-170. 

1408-1414 (1981). 

Proceedings of the Third Symposium on Turbulent Shear Flows, Davis, 8.26-8.34 (1981). 

Foreign Technology Division, FTD-ID (RS)T-0880-77, 1977. 

with imposed controlled oscillations’, Stanford University Technical Report TF-8, 1975. 

Journal. 

Journal, 20, 769-775 (1982). 

1967. 




